Let's use the failure models to predict the ultimate strength-to-weight (SWR) of one of our reinforced concrete beams from lab.

Consider a beam with the following characteristics:

- Concrete strength $f'_c = 4,000$ psi
- Steel strength $f_y = 60,000$ psi
- The tension reinforcement will be 1 #4 rebars
- The shear reinforcement will be #3 rebars, U-shaped, 3 in. spacing
- Use minimum cover of 0.75 in. and a width to accommodate the reinforcement

Component	Amount (lb.)	
water	315	
cement	553	
coarse aggregate	1,641	
fine aggregate	1,431	

Bar #	Diameter (in.)	As (in. ²)
3	0.375	0.11
4	0.500	0.20
5	0.625	0.31
6	0.750	0.44

Let's use the failure models to predict the ultimate strength-to-weight (SWR) of one of our reinforced concrete beams from lab.

Consider a beam with the following characteristics:

- Concrete strength $f'_c = 6,000$ psi
- Steel strength $f_y = 60,000$ psi
- The tension reinforcement will be 2 #4 rebars
- The shear reinforcement will be #3 rebars installed vertically at 4 in. spacing
- Use minimum cover of 1 in., a bar spacing of 0.75 in., and a width to accommodate the reinforcement

Component	Amount (lb.)	
water	315	
cement	768	
coarse aggregate	1,641	
fine aggregate	1,251	

Bar #	Diameter (in.)	As (in. ²)
3	0.375	0.11
4	0.500	0.20
5	0.625	0.31
6	0.750	0.44

Let's use the failure models to predict the ultimate strength-to-weight (SWR) of one of our reinforced concrete beams from lab.

Consider a beam with the following characteristics:

- Concrete strength $f'_c = 4,000$ psi
- Steel strength $f_y = 60,000$ psi
- The tension reinforcement will be 1 #6 rebars
- The shear reinforcement will be #3 rebars, U-shaped, 3 in. spacing
- Use minimum cover of 0.75 in. and a width to accommodate the reinforcement

Component	Amount (lb.)	
water	315	
cement	553	
coarse aggregate	1,641	
fine aggregate	1,431	

Bar #	Diameter (in.)	As (in.²)
3	0.375	0.11
4	0.500	0.20
5	0.625	0.31
6	0.750	0.44

Let's use the failure models to predict the ultimate strength-to-weight (SWR) of one of our reinforced concrete beams from lab.

Consider a beam with the following characteristics:

- Concrete strength $f'_c = 6,000$ psi
- Steel strength $f_y = 60,000$ psi
- The tension reinforcement will be one #5 rebars
- The shear reinforcement will be one #3 rebars installed vertically at 3 in. spacing
- Use minimum cover of 1 in. to accommodate the reinforcement

Component	Amount (lb.)	
water	315	
cement	768	
coarse aggregate	1,658	
fine aggregate	1,242	

Bar #	Diameter (in.)	As (in. ²)
3	0.375	0.11
4	0.500	0.20
5	0.625	0.31
6	0.750	0.44

