BR Bar Rack TS Traveling M Mixing Cak

Sedimentation

 \mathcal{O}

Sedimentation is the **downwards movement of an object** relative to its surrounding medium, due to the force of gravity.

Sedimentation 6144 Particles

Box dimensions: [160,120, 20] Volume fraction: 0.13

Treatment Processes

Flocculation Settling Granular Filtration

CW

CW Clear Well HSP High Servic FP Filter Press

٦

Sedimentation

- Sedimentation is the accumulation through gravity of particulate matter at the bottom of a fluid.
- This natural process is frequently used to separate contaminants from air, water, and wastewater.
- > There are four types of settling:
 - discrete
 - flocculant
 - hindered
 - > compression

Sedimentation

- Discrete Individual particles settle independently, neither agglomerating nor interfering with the settling of the other particles present. This occurs in water with a low concentration of particles.
- Flocculant Particle concentrations are high enough that agglomeration occurs. This reduces the number of particles and increases average particle mass. The heavier particles sink faster.

Sedimentation

- Hindered Particle concentration is sufficient that particles interfere with the settling of other particles.
- Compression In the lower reaches of clarifiers where particle concentrations are highest, particles can settle only by compressing the mass of particles below.

Sedimentation

- Discrete settling, can be analyzed by calculating the settling velocity of the individual particles contained within the water.
- > The forces acting on a particle are:
 - gravity in the downward direction,
 - > drag acting in the upward direction as the particle settles
 > upward buoyancy due the water displaces by the particle

 ho_p is the density of the particle, lb-mass/ft.³, V_p is the volume of the particle, ft.³, and g is the gravitational constant, ft./s²

Sedimentation

The buoyant force acting on the particle is:

$$F_b = m_w g$$

Substituting the particle volume and density of water, yields:

 $F_b = \rho_w V_p g$

where: $\rho_{\rm w}$ is the density of water, *lb-mass/ft*³,

Sedimentation

By balancing the forces acting on a settling particle and using the relationships for F_g the force due to gravity, F_d the drag force, and F_b the buoyant force, the following relationship can be developed:

$$\rho_p V_p g = \frac{1}{2} C_d A \rho_w v^2 + \rho_w V_p g$$

Sedimentation

Solving for the settling velocity, *v*, results in:

$$v = \sqrt{\frac{2(\rho_p - \rho_w)V_pg}{C_dA\rho_w}}$$

If the particle is assumed to round and the formulas for area and volume of a sphere are used:

where d_p is the

diameter of the

particle

$$v = \sqrt{\frac{4(\rho_p - \rho_w)d_pg}{3C_d\rho_w}}$$

SedimentationAt low Reynolds numbers (for $N_{Rei} < 1$) C_d , can be
approximated by: $C_d = \frac{24}{N_{Re}}$ For Reynolds Numbers is transition flow, $1 < N_{Re} < 10,000$,
the drag coefficient for spheres is: $C_d = \frac{24}{N_{Re}} + \frac{3}{\sqrt{N_{Re}}} + 0.34$ For turbulent flow, $N_{Re} > 10,000$, the relationship for the drag
coefficient for spheres is:

 $C_{d} = 0.4$

Sedimentation This relationship is known as Stokes' law, and the velocity is known as the Stokes velocity. $(\rho_{\rm p}-\rho_{\rm w})d^2q$

$$v_p = \frac{(\rho_p - \rho_w)d^2g}{18\mu}$$

The vertical velocity of water in a settling basin is often described as the **overflow rate (OFR)**.

It is usually expressed as gal./ft.2-day (m3/m2-day).

