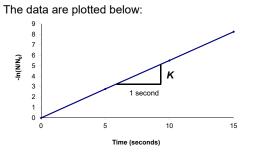
Disinfection Problem

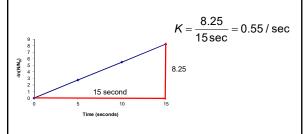
The following is actual data for a virus exposed to an experimental disinfectant. Estimate the contact time required to obtain a reduction of the 1/25,000 of the original number of virus.

Time,second	5	10	15
N/N ₀	1/16	1/244	1/3,827


$$\ln\left(\frac{N}{N_0}\right) = -kt$$

Disinfection Problem

Plot the data with - $In(N/N_0)$ on the y axis and time on the **x** axis. The data for the plot are as follows:


Time,second	5	10	15
N/N _o	1/16	1/244	1/3,827
$-In(N/N_0)$	2.77	5.50	8.25

Disinfection Problem

Disinfection Problem

The slope of the line is the disinfection constant:

Disinfection Problem

The time required for a reduction of 1/25,000 is:

$$t = \frac{-\ln\left(\frac{N}{N_0}\right)}{k} = \frac{-\ln\left(\frac{1}{25,000}\right)}{0.55/s} = 18.41 \text{sec onds}$$

t = 18.41 seconds or 19 seconds