

CIVL 1112 – Assignment #2

Name: _____

Part 1. Solve the following three problems (you are not required to use an Excel spreadsheet)

Carbon Dioxide Removal #1

- Groundwater containing 20 mg/l of carbon dioxide will be degasified using a multiple-tray aerator with 5 trays. At this water treatment facility, 10 aerators operate in parallel. For maintenance reasons, only 8 of the aerators are available at any one time. The design population is 40,000 people, and the maximum day demand is 150 gal/person-day. The k value is 0.35, and the hydraulic loading is 4 gpm/ft.². Determine:

1. The carbon dioxide content of the product water.
2. The size of the trays if the length-to-width ratio is 2:1 and the trays are made in 1-inch increments.

Carbon Dioxide Removal #2

- Groundwater containing 35 mg/l of carbon dioxide will be degasified using a multiple-tray aerator. The design population is 150,000 people, and the maximum demand is 150 gal/person-day. The k value is 0.36, and the hydraulic loading is 3 gpm/ft.². Determine:
 1. Determine the total number of trays in an aerator required to reduce the product water's carbon dioxide content by 90%.
 2. Determine the number of aerators, operated in parallel, required for the water treatment facility if each tray's size is 1,000 ft².

Disinfection

- The following is data for a virus exposed to an experimental disinfectant. Estimate the contact time required to obtain a reduction of 1/40,000 of the original number of viruses.

Time, seconds	1	2	4	8
N/N_0	3,602/10,000	1,303/10,000	168/10,000	3/10,000

Part 2. Use Excel to develop a table containing the carbon dioxide removal in a water treatment process using the aeration model we described in class.

$$\frac{C}{C_0} = e^{-kn}$$

Develop a spreadsheet where the number of aeration trays, n , varies by row, and the rate constant, k , varies by column. Also, allow the initial effluent concentration to be a parameter in your calculations. In other words, store the value of C_0 in a cell outside the table.

Part 3. Use Excel to demonstrate the effects of the coagulant on effluent turbidity (NTU) as recorded in the lab.

- a. From the jar test data, plot the supernatant turbidity (NTU) as a function of the coagulant dosage. Click [here](#) for jar test data.
- b. Determine the best dosage of coagulant from your observations and measurements.
- c. Using the dosage found in Part b, calculate the quantity (lb.) of the coagulant needed to treat 20 million gallons per day (MGD).

Part 4. Read Chapters 3 and 4 in "A Mind for Numbers" by Barbara Oakley.