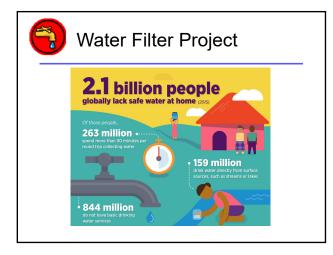
Water Filter Project

- Safe and readily available water is important for public health, whether it is used for drinking, domestic use, food production or recreational purposes.
- Improved water supply and sanitation, and better management of water resources, can boost countries' economic growth and can contribute greatly to poverty reduction.

Water Filter Project

- In 2010, the UN General Assembly explicitly recognized the human right to water and sanitation.
- Everyone has the right to sufficient, continuous, safe, acceptable, physically accessible, and affordable water for personal and domestic use.


Water Filter Project

- In 2017, 71% of the global population (5.3 billion people) used a safely managed drinking-water service – that is, one located on premises, available when needed, and free from contamination.
- 90% of the global population (6.8 billion people) used at least a basic service. A basic service is an improved drinking-water source within a round trip of 30 minutes to collect water.

Water Filter Project

- 785 million people lack even a basic drinking-water service, including 144 million people who are dependent on surface water.
- Globally, at least 2 billion people use a drinking water source contaminated with feces.
- Contaminated water can transmit diseases such diarrhea, cholera, dysentery, typhoid, and polio.
 Contaminated drinking water is estimated to cause 485,000 diarrheal deaths each year.

Water Filter Project

- By 2025, half of the world's population will be living in water-stressed areas.
- In least developed countries, 22% of health care facilities have no water service, 21% no sanitation service, and 22% no waste management service.

Water Filter Project

- RDW, Inc. is inviting proposals for a smallscale personal water filtration system to be used in remote areas to provide clean drinking water.
- The contact person for this project is Ms. Doris Paanee, Senior Research Manager.

Water Filter Project

 The objective of this project is to design and construct, within given constraints, a granular-media filter that would treat as much water as possible (maximize volume) while removing as many suspended particles as possible (minimizing turbidity levels) for a given amount of time.

Water Filter Project

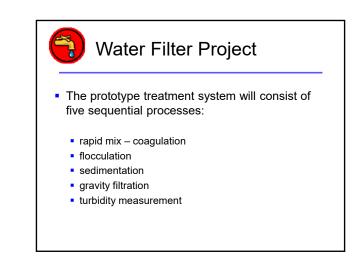
- The amount of suspended particles will be measure by the turbidity of the influent water.
- Turbidity is defined as any finely divided, insoluble impurities, whatever their nature, that may be suspended in and mar the clarity of water.

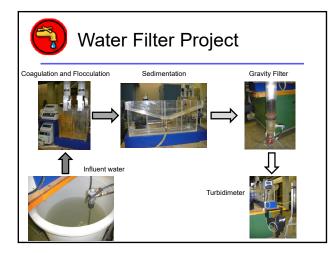
Water Filter Project

 The types of filters used for the filtration of water are almost universally employ a granular filter medium, such as fine sand or anthracite, through which water is pulled through the filter by gravity.

Water Filter Project

- A series of experimental granular filters will be evaluated over the next several weeks.
- From these preliminary experiments, each group will evaluate the effectiveness of the filters and use the results to design a water filter.




Water Filter Project The design constraints are as follows: The influent water flowrate into the filter is restricted to the flowrate of the provided pump; The filter is to be tested for a period of 60 minutes; and Each filter must have a minimum filter efficiency 40,000 ml and a minimum %Turbidity (NTU) removal of 95%.

Water Filter Project

 The efficiency of the water filter will be evaluated on the volume and quality of the water treated by the filter and the reduction in turbidity of the influent during a 60-minute filter run.

Filter Efficiency Calculations

- The filter efficiency calculation is designed to compute the average turbidity (NTU) removed by a water filter run.
- There are two types of calculations:
 - Average flowrate over a time interval
 - Cumulative turbidity (NTU) removed

4/6

Filter Efficiency Calculations

Given the following data collected during a filter run where the initial turbidity (NTU) is 105:

Time (min)	Flowrate (ml/min)	Turbidity (NTU)	Volume (ml)	Average Turbidity (NTU)
0	800	35		
10	800	28		
20	800	24		
30	650	15		
40	650	13		
50	500	15		
60		20		

st, com erval	pute the a	verade	a	
			nowrate ov	er each time
		average	nownate of	
rival.				
	_			
Time	Flowrate	Turbidity	Volume	Average Turbidity
(min)	(ml/min)	(NTU)	(ml)	(NTU)
0	800	35		
10	800	28		
20	800	24		
30	650	15		
40	650	13		
50	500	15		

Filter Efficiency Calculations

	Filter Efficiency Calculations							
In	creme	ental Vo	lume =	= Flowra	ate _{i-1} ×Time _i			
		ie 10 minut al volume is	9	300 ^{ml} /min×	10 minutes = 8,000 ml			
	Time (min)	Flowrate (ml/min)	Turbidity (NTU)	Volume (ml)	Average Turbidity (NTU)			
	0	800 🐂	35					
	10	800 🐂	28	8,000				
	20	800 🛰	24	8,000				
	30	650 🐂	15	8,000				
	40	650 🐂	13	6,500				
	50	500 🛰	15	6,500				
	60		20	5,000				
				42,000				

Filter Efficiency Calculations

Next, compute the average turbidity for each time interval.

Time (min)	Flowrate (ml/min)	Turbidity (NTU)	Volume (ml)	Average Turbidity (NTU)
0	800	35		
10	800	28	8,000	
20	800	24	8,000	
30	650	15	8,000	
40	650	13	6,500	
50	500	15	6,500	
60		20	5,000	
			42,000	

	Filt	er Effi	cienc	y Calo	culations	
Averag	ge Turbio	$dity_i = \frac{Tur}{t}$	bidity _i + 7 2	Turbidity _{i-1}	× Incremental Vo Total Volum	lume e
	Time (min)	Flowrate (ml/min)	Turbidity (NTU)	Volume (ml)	Average Turbidity (NTU)	
	0	800	35			
	10	800	28	8,000		
	20	800	24	8,000		
	30	650	15	8,000		
	40	650	13	6,500		
	50	500	15	6,500		
	60		20	5,000		
				42,000	1	

		icienc	:v Calo	culations		
Filter Efficiency Calculations						
		35+28	8.000 <i>m</i>	l		
erage Tu	urbidity ₁₀ =	2	× <u>42,000 m</u>	$\frac{l}{nl} = 6.00 \text{ NTU}$		
			,			
Time (min)	Flowrate (ml/min)	Turbidity (NTU)	Volume (ml)	Average Turbidity (NTU)		
(11111)	. ,	35		(110)		
0						
0	800			6.00		
0 10 20	800 800 800	28	8,000	6.00		
10	800	28		6.00		
10 20	800 800	28 24	8,000 8,000	6.00		
10 20 30	800 800 650	28 24 15	8,000 8,000 8,000	6.00		
10 20 30 40	800 800 650 650	28 24 15 13	8,000 8,000 8,000 6,500	6.00		

5/6	5
-----	---

	Filter Efficiency Calculations						
Ave	rage Tur	bidity ₂₀ =	$\frac{28+24}{2}$	$\times \frac{8,000m}{42,000m}$	nl nl = 4.95 NTU		
			-				
	Time (min)	Flowrate (ml/min)	Turbidity (NTU)	Volume (ml)	Average Turbidity (NTU)		
	(min)	(ml/min)	(NTU)				
	(min) 0	(ml/min) 800	(NTU) 35	(ml) 	(NTU)		
	(min) 0 10	(ml/min) 800 800	(NTU) 35 28	(ml) 8,000	(NTU) 6.00		
	(min) 0 10 20	(ml/min) 800 800 800	(NTU) 35 28 24	(ml) 8,000 8,000	(NTU) 6.00		
	(min) 0 10 20 30	(ml/min) 800 800 800 650	(NTU) 35 28 24 15	(ml) 8,000 8,000 8,000	(NTU) 6.00		
	(min) 0 10 20 30 40	(ml/min) 800 800 800 650 650	(NTU) 35 28 24 15 13	(ml) 8,000 8,000 8,000 6,500	(NTU) 6.00		

Filter Efficiency Calculations							
he remaining incremental Average Turbidity values are:							
				11			
Time	Flowrate	Turbidity	Volume	Average Turbidity			
(min)	(ml/min)	(NTU)	(ml)	(NTU)			
0	800	35					
10	800	28	8,000	6.00			
20	800	24	8,000	4.95			
30	650	15	8,000	3.71			
			0.500	2.17			
40	650	13	6,500	Z.17			
	650 500	13	6,500	2.17			
40			6,500				
40 50	500	15		2.17			

Filter Efficiency Calculations

Average Turbidity is the sum the incremental values.

Time (min)	Flowrate (ml/min)	Turbidity (NTU)	Volume (ml)	Average Turbidity (NTU)
0	800	35		
10	800	28	8,000	6.00
20	800	24	8,000	4.95
30	650	15	8,000	3.71
40	650	13	6,500	2.17
50	500	15	6,500	2.17
60		20	5,000	2.08
			42,000	21.08

Filter Efficiency Calculations

Lastly, compute the %Turbidity (NTU) removed and the filter efficiency.

Time (min)	Flowrate (ml/min)	Turbidity (NTU)	Volume (ml)	Average Turbidity (NTU)
0	800	35		
10	800	28	8,000	6.00
20	800	24	8,000	4.95
30	650	15	8,000	3.71
40	650	13	6,500	2.17
50	500	15	6,500	2.17
60		20	5,000	2.08
			42,000	21.08

	Filte	er Effi	cienc	cy Calo	culations
%	6Turbidit	y Remove	ed = Turk	oidity _{ınitial} – . Turb	AverageTurbidity idity _{Initial}
	Time (min)	Flowrate (ml/min)	Turbidity (NTU)	Volume (ml)	Average Turbidity (NTU)
	0	800	35		
	10	800	28	8,000	6.00
	20	800	24	8,000	4.95
	30	650	15	8,000	3.71
	40	650	13	6,500	2.17
	50	500	15	6,500	2.17
	60		20	5,000	2.08
				42,000	21.08

%Turt	oidity Rem	, 1	05-211	
Time	Flowrate	OVED = -	105	< 100% = 79.9%
(min)	(ml/min)	(NTU)	(ml)	(NTU)
•	800	35		
0				
10	800	28	8,000	6.00
-	800 800	28 24	8,000 8,000	4.95
10				
10 20	800	24	8,000	4.95
10 20 30	800 650	24 15	8,000 8,000	4.95 3.71
10 20 30 40	800 650 650	24 15 13	8,000 8,000 6,500	4.95 3.71 2.17

Filt	ter Effi	icienc	y Cal	culations
-ilter Ff	iciencv=\	/olume	(ml)×%T	urbidity Remove
Filter Et	ficiency =	= 42,000)ml×79.9	9% = 33,558 ml
Time (min)	Flowrate (ml/min)	Turbidity (NTU)	Volume (ml)	Average Turbidity (NTU)
Time	Flowrate	Turbidity	Volume	Average Turbidity
Time (min)	Flowrate (ml/min)	Turbidity (NTU)	Volume	Average Turbidity
Time (min) 0	Flowrate (ml/min) 800	Turbidity (NTU) 35	Volume (ml) 	Average Turbidity (NTU)
Time (min) 0 10	Flowrate (ml/min) 800 800	Turbidity (NTU) 35 28	Volume (ml) 8,000	Average Turbidity (NTU) 6.00
Time (min) 0 10 20	Flowrate (ml/min) 800 800 800	Turbidity (NTU) 35 28 24	Volume (ml) 8,000 8,000	Average Turbidity (NTU) 6.00 4.95
Time (min) 0 10 20 30	Flowrate (ml/min) 800 800 800 650	Turbidity (NTU) 35 28 24 15	Volume (ml) 8,000 8,000 8,000	Average Turbidity (NTU) 6.00 4.95 3.71
Time (min) 0 10 20 30 40	Flowrate (ml/min) 800 800 650 650	Turbidity (NTU) 35 28 24 15 13	Volume (ml) 8,000 8,000 8,000 6,500	Average Turbidity (NTU)

