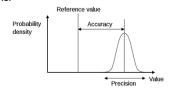
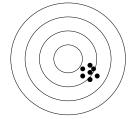
- > Typically, we are accustomed to *counting* but not *measuring*.
- > Engineers are concerned with distances, elevations, volumes, direction, and weights.
- > Fundamental principle of measuring:


No measurement is exact and the true value is never known

Introduction to Measurements

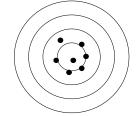
Accuracy and Precision


- Accuracy degree of perfection obtained in a measurement
- Precision the closeness of one measurement to another

Introduction to Measurements

Accuracy and Precision

Target #1

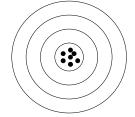


This target grouping is precise

Introduction to Measurements

Accuracy and Precision

Target #2



This target grouping is accurate

Introduction to Measurements

Accuracy and Precision

Target #3

This target grouping is accurate and precise

Introduction to Measurements

Accuracy and Precision

Here are a couple of other web sites for additional information in accuracy and precision:

 $\underline{\text{https://courses.lumenlearning.com/physics/chapter/1-3-accuracy-precision-and-significant-figures/}$

http://en.wikipedia.org/wiki/Accuracy

Accuracy and Precision

- Better precision does not necessarily mean better accuracy
- > In measuring distance, precision is defined as:

$$precision = \frac{error \text{ of measurement}}{\text{distance measured}}$$

Introduction to Measurements

Accuracy and Precision

> For example, if a distance of 4,200 ft. is measured and the error is estimated a 0.7 ft., then the precision is:

precision =
$$\frac{0.7 \text{ ft.}}{4,200 \text{ ft.}} = \frac{1}{6,000}$$

The objective of surveying is to make measurements that are both *precise* and *accurate*

Introduction to Measurements

Source of Errors

- Personal Errors no surveyor has perfect senses of sight and touch
- Instrument Errors devices cannot be manufactured perfectly, wear and tear, and compatibility with other components
- > Natural Errors temperature, wind, moisture, magnetic variation, etc.

Introduction to Measurements

Systematic and Accidental Errors

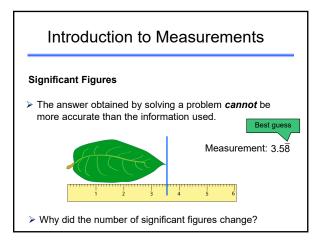
- Systematic or Cumulative Errors typically stays constant in sign and magnitude
- Accidental, Compensating, or Random Errors - the magnitude and direction of the error is beyond the control of the surveyor

Introduction to Measurements

Significant Figures

- > Measurements can be precise only to the degree that the measuring instrument is precise.
- > The number of significant figures the number of digits you are certain about plus one that is estimated
- For example, what if I tell you go down Central Avenue 1 mile and turn left, what should you do?
- What if I said instead, go down Central Avenue 1.53 miles and turn left. How is that different?

Introduction to Measurements


Significant Figures

For example, you measure a distance with a tape and the point is somewhere between 34.2 ft. and 34.3 ft.

- > You estimate the distance as 34.26 ft.
- Best guess
- > What is the significance of reporting a value of 34.2 ft.

Introduction to Measurements Significant Figures > The answer obtained by solving a problem cannot be more accurate than the information used. Best guess Measurement: 3.6

Introduction to Measurements

Significant Figures

Zeroes between other significant figures are significant

23.07

1007

4 significant figures

4 significant figures

Introduction to Measurements

Significant Figures

For numbers less than one, zeroes immediately to the right of the decimal place *are not* significant

0.0007

0.03401

1 significant figures

4 significant figures

Introduction to Measurements

Significant Figures

Zeroes placed as the end of a decimal number *are* significant

0.700

39.030

3 significant figures

5 significant figures

Introduction to Measurements

Significant Figures

36.00620

7 significant figures

10.2

3 significant figures

0.00304

3 significant figures

Significant Figures

When a number ends with one or more zeros to the left of the decimal, you must indicate the exact number of significant figures.

420,000

How many significant figures?

Introduction to Measurements

Significant Figures

When a number ends with one or more zeros to the left of the decimal, you must indicate the exact number of significant figures.

 $4.32 (10)^5$ $4.320 (10)^5$

3 significant figures

4 significant figures

Introduction to Measurements

Significant Figures - Mathematical Operations

When two numbers are multiplied or divided, the answer should not have more significant figures than those in the factor with the least number of significant figures.

3 significant figures $\begin{array}{c} 3.25 \times 4.6962 \\ \hline 8.1002 \times 6.152 \end{array} = 0.306$ 4 significant figures 5 significant figures

Introduction to Measurements

Significant Figures - Mathematical Operations

Typically, you want to carry more decimal places in your calculations and round-off the final answer to correct number of significant figures.

3 significant figures 5 significant figures $3.25 \times 4.6962 = 15.3$

Introduction to Measurements

Significant Figures - Mathematical Operations

In addition, and subtraction, the final answer should correspond to the column full of significant figures.

Introduction to Measurements

Significant Figures - Mathematical Operations

- When the answer to a calculation contains too many significant figures, it must be rounded off.
- ➤ One way of rounding off involves *underestimating* the answer for five of these digits (0, 1, 2, 3, and 4) and overestimating the answer for the other five (5, 6, 7, 8, and 9).

Significant Figures - Mathematical Operations

This approach to rounding off is summarized as follows:

If the digit is smaller than 5, drop this digit and leave the remaining number unchanged.

Report the following to three significant figures:

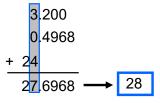
1.68497 → **1.68**

Introduction to Measurements

Significant Figures - Mathematical Operations

This approach to rounding off is summarized as follows:

If the digit is 5 or larger, drop this digit and add 1 to the preceding digit.


Report the following to three significant figures:

1.24712 -> 1.25

Introduction to Measurements

Significant Figures - Mathematical Operations

In addition, and subtraction, the final answer should correspond to the column full of significant figures

Introduction to Measurements

Significant Figures - Mathematical Operations

When measurements are converted into another set of units, the number of significant figures is preserved.

39,456 ft² --- 0.90579 acres

Introduction to Measurements

Significant Figures - Mathematical Operations

There is a nice interactive practice on significant figures on the web at:

 $\underline{\text{http://www.mrwiggersci.com/chem/Tutorials/Ch2-Interact-Pract-Sig-Figs-Blacksburg.htm}}$

> Some other sites you might want to check out:

http://en.wikipedia.org/wiki/Significant figures

http://www.chem.tamu.edu/class/fyp/mathrev/mr-sigfg.html

Introduction to Measurements

Any Questions?