Water Treatment

- Water treatment describes those industrial-scale processes used to make water more acceptable for a desired end-use.
- These can include use for drinking water, industry, medical and many other uses.

Water Treatment

- 5. Disinfection Chlorine is added to reduce risks from remaining bacteria and other disease-causing organisms and to maintain water quality through the distribution pipe system.
- **6. Fluoridation** Fluoride is added to provide dental benefits.
- 7. **Stabilization** Small amounts of lime (calcium hydroxide) or sodium hydroxide are added to make the water less corrosive to pipes and plumbing.
- 8. Collect and test water samples

- Filtration is used to separate nonsettleable solids from water and wastewater by passing it through a porous medium
- The most common system is filtration through a layered bed of granular media, usually a coarse anthracite coal underlain by a finer sand.

Water Filtration

- In the 1700s the first water filters for domestic application were applied. These were made of wool, sponge and charcoal.
- In 1804 the first actual municipal water treatment plant designed by Robert Thom, was built in Paisley, Scotland.
- The water treatment was based on slow sand filtration, and horse and cart distributed the water.
- Some three years later, the first water pipes were installed.

- In 1854 it was discovered that a cholera epidemic spread through water.
- The outbreak seemed less severe in areas where sand filters were installed.
- British scientist John Snow found that the direct cause of the outbreak was water pump contamination by sewage water.
- He applied chlorine to purify the water, and this paved the way for water disinfection.

Water Filtration

Gravity Granular-Media Filtration

- Gravity filtration through beds of granular media is the most common method removing colloidal impurities in water processing
- Initially, surface straining and interstitial removal results in accumulation of deposits in the upper portion of the filter media

- Turbidity is a measurement of the clarity of water run
- Clouded water is caused by suspended particles scattering or absorbing the light
- Turbidity is an indirect measurement of the amount of suspended matter in the water

Slow Sand Filtration

The filter builds up a layer of filtered contaminants on the surface, which becomes the active filtering medium

- Slow sand filters are cleaned by taking them off line and draining them. The organic or contaminant layer is then scraped off.
- The filter can then be restarted. After water quality reaches an acceptable level, the filter can then be put back on line.

- In rapid sand filtration much higher application velocities are used
- Filtration occurs through the depth of the filter
- A comparison of rapid and slow sand filtration is shown in the table below

Filtration Type	Application Rate	
	m/hr	gal/ft ² -day
Slow Sand	0.04 to 0.4	340 to 3400
Rapid Sand	0.4 to 3.1	3400 to 26,000

	🖌 Wa	iter Filtra	ation			
Ra	Rapid Sand Filtration					
≻ Ir e g	n the United States xpressed as volum al/min-ft ² , which is	, filter applicatic etric flowrate p actually a veloc	on rates are often er area, or sity with atypical units.			
	Filtration Type	Application Rate				
		m/hr	gal/ft ² -day			
	Slow Sand	0.04 to 0.4	340 to 3400			
	Rapid Sand	0.4 to 3.1	3400 to 26,000			

	W	ater Filtr	ation
ydraulic Loading Rate			
	I a a allow a	roto of E CO1 a	and/ft 2 aculd ha
A hydraulic qualifies	Type	apid sand filter	partion Rate
A hydraulic qualifies Filtration	Toading as a ra	apid sand filter	cation Rate
A hydraulic qualifies Filtration Slow Sa	Toading as as a ra Type and	Applic m/hr 0.04 to 0.4	cation Rate gal/ft ² -day 340 to 3,400

The water flows through the filter and support media, exiting from a pipe below.

Backwash Velocity Example

Determine the required backwash velocity to expand the sand filters in lab to a porosity of 0.70.

Also, determine the depth of the expanded filter bed.

Assume the following data about our lab filters:

- 1. Depth of sand bed 0.5 ft.
- 2. Sand with a particle diameter of 0.5 mm or 0.02 in. with a settling velocity of 0.27 ft./s
- 3. Sand porosity is 0.35

Water Filtration

Backwash Velocity Example

The backwash velocity may be estimated using the following equation

$$v = v_{s} \alpha_{e}^{4.5}$$

= $(0.27 \text{ ft./s})(0.70)^{4.5}$
= 0.054 ft./s

- 1. Coarse enough to retain large quantities of floc,
- 2. Sufficiently fine particles to prevent passage of suspended solids,
- 3. Deep enough to allow relatively long filter runs, and
- 4. Graded to permit backwash cleaning.

2. For a course sand the opposite would be true

Water Filtration

Filter Media

A filter medium is defined by *effective size* and *uniformity coefficient*.

Effective size is the 10-percentile diameter; that is, 10% by weight of the filter material is less than this diameter, D_{10}

Uniformity coefficient is the ratio of the 60-percentile size to the 10-percentile size $(D_{60}\,/D_{10})$

Water Filtration

Filter Media

Conventional sand medium has an effective size of 0.45-0.55 mm, a uniformity coefficient less than 1.65 $\,$

A sand filter bed with a relatively uniform grain size can provide effective filtration throughout its depth

	Water Filtration			
Multimedia Filters				
Dual-media filter beds usually employ anthracite and sand				
However, activated	other materials have been used, such as carbon and sand			
<i>Multimedia filter</i> beds generally use anthracite, sand, and garnet.				

However, other materials have been used, such as activated carbon, sand, and garnet.

3. The ability to filter a water with higher turbidity

- 1. The media particle size,
- 2. The different specific gravities of the media, and
- 3. The media gradation.

