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1. Engineering Structures and Materials

1.1 Introduction

Mechanics of materials is a branch of applied mechanics that deals with the behavior of
solid bodies subjected to various types of loading. This field of study is known by several
names, including “Strength of materials” and “mechanics of deformable bodies.” The solid
bodies considered in this book include axially loaded members, shafts in torsion, thin shells,
beams, and columns, as well as structures that are assemblies of these components. Usually
the objectives of our analysis will be the determination of the stresses, strains, and deflections
produced by the loads. If these quantities can be found for all values of load up to the failure
load, then we will have a complete picture of the mechanical behavior of the body.

A thorough understanding of mechanical behavior is essential for the safe design of all
structures, whether buildings and bridges, machines and motors, submarines and ships, or
airplanes and antennas. Hence, mechanics of materials is a basic subject inmany engineering
fields. Of course, statics and dynamics are also essential, but they deal primarily with the
forces and motions associated with particles and rigid bodies. In mechanics of materials, we
go one step further by examining the stresses and strains that occur inside real bodies that de-
form under loads. We use the physical properties of the materials (obtained from experi-
ments) as well as numerous theoretical laws and concepts, which are explained in succeeding
sections of this book.

Theoretical analyses and experimental results have equally important roles in the study of
mechanics ofmaterials. Onmanyoccasions,wewillmake logical derivations to obtain formu-
lasand equations for predictingmechanical behavior, butwemust recognize that these formu-
las cannot be used in a realistic way unless certain properties of the materials are known.
These properties are available to us only after suitable experiments have been carried out in
the laboratory. Also, because many practical problems of great importance in engineering
cannot be handled efficiently by theoretical means, experimental measurements become a
necessity.

The historical development of mechanics of materials is a fascinating blend of both theory
and experiment; experiments have pointed the way to useful results in some instances, and
theory has done so in others. Such famousmen as Leonardo da Vinci (1452-1519) and Galileo
Galilei (1564-1642) performed experiments to determine the strength of wires, bars, and
beams, although theydid notdevelop any adequate theories (by today’s standards) to explain
their test results. Such theories camemuch later. By contrast, the famousmathematicianLeon-
hard Euler (1707-1783) developed the mathematical theory of columns and calculated the
theoretical critical load of a column in 1744, long before any experimental evidence existed to
show the significance of his results. Thus, for want of appropriate tests, Euler’s results re-
mained unused for many years, although today they form the basis of column theory.
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When studying mechanics of materials from this book, you will find that your efforts are
dividednaturally into twoparts: first, understanding the logical development of the concepts,
and second, applying those concepts to practical situations. The former is accomplished by
studying the derivations, discussions, and examples, and the latter by solving problems.
Some of the examples and problems are numerical in character, and others are algebraic tor
symbolic). An advantage of numerical problems is that the magnitudes of all quantities are
evident at every stage of the calculations. Sometimes these values are needed to ensure that
practical limits (such as allowable stresses) are not exceeded. Algebraic solutions have certain
advantages, too. Because they lead to formulas, algebraic solutions make clear the variables
that affect the final result. For instance, a certain quantity may actually cancel out of the solu-
tion, a fact that would not be evident from a numerical problem. Also apparent in algebraic
solutions is themanner inwhichvariables affect the results, such as the appearanceof onevari-
able in the numerator and another in the denominator. Furthermore, a symbolic solution pro-
vides the opportunity to check the dimensions at any stage of the work. Finally, the most im-
portant reason for obtaining an algebraic solution is to obtain a general formula that can be
programmed on a computer and used for many different problems. In contrast, a numerical
solution applies to only one set of circumstances. Of course, youmust beadept atbothkindsof
solutions, hence youwill find a mixture of numerical and algebraic problems throughout the
book.

Numerical problems require that youworkwith specific units of measurements. The two
accepted standards of measurement are the. International System of Units (SI) and the U.S.
Customary System (USCS). Asyouknowsignificantdigits are very important in engineering.
In our work in this section, three significant digits provides enough accuracy.

1.2 Normal Stress and Strain

The fundamental concepts of stress and strain canbe illustrated by considering aprismat-
ic bar that is loaded by axial forces P at the ends, as shown in Figure 1. A prismatic bar is a
straight structural member having constant cross section throughout its length. In this il-
lustration, theaxial forcesproduce auniformstretchingof thebar; hence, the bar is said tobe in
tension.

To investigate the internal stresses produced in the bar by the axial forces, we make an
imaginary cut at section aa (Figure 1). This section is taken perpendicular to the longitudinal
axis of the bar; hence, it is known as a cross section. We now isolate the part of the bar to the
rightof the cutasa freebody. The tensile loadPacts at the righthandendof the freebody; at the
other end are forces representing the action of the removed part of the bar upon the part that
remains. These forces are continuously distributed over the cross section, analogous to the
continuous distribution of hydrostatic pressure over a submerged horizontal surface. The in-
tensity of force (that is, the force per unit area) is called the stress and is commonly denoted by
the Greek letter � (sigma). Assuming that the stress has a uniform distribution over the cross
section (see Figure 1), we can readily see that its resultant is equal to the intensity � times the
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Figure 1. Bar in tension.
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cross-sectional area A of the bar. Furthermore, from the equilibrium (balancing of forces) of
the body shown in Figure 1, it is also evident that this resultant must be equal in magnitude
and opposite in direction to the applied load P. Hence, we obtain

σ= P
A

(1--1)

as the equation for the uniform stress in an axially loaded, prismatic bar of arbitrary cross-sec-
tional shape. When the bar is stretched by the forces P, as shown in the figure, the resulting
stresses are tensile stresses; if the forces are reversed in direction, causing the bar to be com-
pressed,weobtain compressive stresses. Inasmuchas the stress aacts inadirectionperpendic-
ular to the cut surface, it is referred to as a normal stress. Thus, normal stressesmay be either
tensile or compressive stresses. Later, wewill encounter another type of stress, called a shear
stress, that acts parallel to the surface.

When a sign convention for normal stresses is required, it is customary to define tensile
stresses as positive (+) and compressive stresses as negative (--).

Because the normal stress � is obtained by dividing the axial force by the cross-sectional
area, it hasunitsof force per unit of area. WhenSI units are used, force is expressed innewtons
(N) and area in square meters (m2). Hence, stress has units of newtons per square meter
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(N/m2), or pascals (Pa). However, the pascal is such a small unit of stress that it is necessary to
work with large multiples. To illustrate this point, we have only to note that it takes almost
7000 pascals to make 1 psi.

As an example, a typical tensile stress in a steel bar might have a magnitude of 140 mega-
pascals (140MPa),which is 140 x 106 pascals. Other units thatmaybe convenient touse are the
kilopascal (kPa) and gigapascal (GPa); the former equals 103 pascals and the latter equals 109

pascals. Although it is not recommended in SI, you will sometimes find stress given in new-
tons per square millimeter (N/mm2), which is a unit identical to the megapascal (MPa).

When usingUSCSunits, stress is customarily expressed in pounds per square inch (psi) or
kips per square inch (ksi). One kip, or kilopound, equals 1000 pounds. For instance, a typical
stress in a steel bar might be 20,000 psi or 20 ksi.

In order for the equation�=P/A to bevalid, the stress�must beuniformlydistributedover
the cross section of the bar. This condition is realized if the axial force P acts through the cen-
troid of the crosssectional area. When the loadPdoesnot act at the centroid, bendingof thebar
will result, and a more complicated analysis is necessary (you will learn more in CIVL 3322
Strength of Materials). However, we will assume throughout our discussions that all axial
forces are applied at the centroid of the cross section unless specifically stated otherwise.

The uniform stress condition pictured in Figure 1 exists throughout the length of themem-
ber exceptnear theends. The stressdistribution at the endsof thebar dependsupon thedetails
of how the axial load P is actually applied. If the load itself is distributed uniformly over the
end, then the stress pattern at the endwill be the same as elsewhere. However, the load is usu-
ally concentrated over a small area, resulting in high localized stresses and nonuniform stress
distributions over cross sections in the vicinity of the load. As we move away from the ends,
the stress distribution gradually approaches the uniform distribution.

It is usually safe to assume that the formula�=P/Amaybe usedwith good accuracy at any
pointwithin the bar that is at least a distance d away from the ends, where d is the largest trans-
verse dimension of the bar (see Figure 1). Of course, evenwhen the stress is not uniform, the
equation � = P/A will give the average normal stress.

An axially loaded bar undergoes a change in length, becoming longerwhen in tension and
shorter when in compression. The total change in length is denoted by the Greek letter δ (del-
ta) and is pictured in Figure 1 for a bar in tension. This elongation is the cumulative result of
the stretching of the material throughout the length L of the bar. Let us now assume that the
material is the same everywhere in the bar. Then, if we consider half of the bar, it will have an
elongation equal to δ/2; similarly, if we consider a unit length of the bar, elongation equal to
1/L times the total elongation δ. In thismanner,we arrive at the concept of elongation per unit
length, or strain, denoted by the Greek letter ε (epsilon) and given by the equation

Á= δ
L

(1--2)
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If the bar is in tension, the strain is called a tensile strain, representing an elongation or
stretchingof thematerial. If the bar is in compression, the strain is a compressive strain and the
bar shortens. Tensile strain is taken aspositive (+), and compressive strain as negative (--). The
strain ε is called a normal strain because it is associated with normal stresses.

Because normal strain ε is the ratio of two lengths, it is a dimensionless quantity; that is, it
has no units. Thus, strain is expressed as a pure number, independent of any system of units.
Numerical values of strain are usually very small, especially for structural materials, which
ordinarily undergo only small changes in dimensions.

As an example, consider a steel bar having length L of 2.0 m. When loaded in tension, the
bar might elongate by an amount δ equal to 1.4 mm. The corresponding strain is

Á= δ
L
= 1.4× 10−3m

2.0m = 0.0007= 700× 10−6

In practice, the original units of δ and L are sometimes attached to the strain itself, and then
the strain is recorded in forms such asmm/m, μm/m, and in./in. For instance, the strain ε in
the preceding illustration could be given as 700 μm/m or 700 x 10-6 in,/in.

The definitions of normal stress and strain are based upon purely statical and geometrical
considerations, hence Equations (1--1) and (1--2) can be used for loads of any magnitude and
for any material. The principal requirement is that the deformation of the bar be uniform,
which in turn requires that the bar be prismatic, the loads act through the centroids of the cross
sections, and the material be homogeneous (that is, the same throughout all parts of the bar).

The resulting state of stress and strain is called uniaxial stress and strain. Further discus-
sions of uniaxial stress, including stresses and strains in other than the longitudinal direction
of the bar, are given in later sections. We will also encounter more complicated stress states,
such as biaxial stress and plane stress, in later chapters.

Example -- A prismatic bar with a circular cross section is subjected to an axial tensile force.
The measured elongation is � = 1.5 mm. Calculate the tensile stress and strain in the bar.

3.5 m

100 kN
x

Diameter = 25 mm

Assuming the axial force act at the centroid of the end cross section, then the stress is

σ= P
A
= 100kN

π(25mm)2
4

= 203.718327 N∕mm2= 204MPa
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The strain is

Á= δ
L
= 1.5mm

3.5m = 429× 10−6

1.3 Stress-Strain Diagrams

The mechanical properties of materials used in engineering are determined by tests per-
formed on small specimens of thematerial. The tests are conducted inmaterials-testing labo-
ratories equippedwith testingmachines capableof loading the specimens in avariety ofways,
including static and dynamic loading in tension and compression.

In order that test resultsmay be compared easily, the dimensions of test specimens and the
methodsof applying loadshave been standardized. Oneof themajor standardsorganizations
is theAmerican Society for Testing andMaterials (ASTM), a national technical society that pu-
blishes specifications and standards for materials and testing. Other standardizing organiza-
tions are the American Standards Association (ASA) and the National Bureau of Standards
(NBS).

The most commonmaterials test is the tension test, in which tensile loads are applied to a
cylindrical specimen. The ends of the specimen are enlargedwhere they fit in the grips so that
failurewill occur in the central uniformregion,where the stress is easy tocalculate, rather than
near the ends, where the stress distribution is complicated. An extensometer is used to mea-
sures the elongation during loading.

The ASTM standard tension specimen has a diameter of 0.5 in. and a gage length of 2.0 in.
between the gagemarks,which are thepointswhere the extensometer arms are attached to the
specimen. As the specimen is pulled, the loadP ismeasured and recorded, either automatical-
ly or by reading from adial. The elongation over the gage length is measured simultaneously
with the load, usually by mechanical gages, although electric-resistance strain gages are also
used. In a static test, the load is applied very slowly; however, in a dynamic test, the rate of
loading may be very high and also must be measured because it affects the properties of the
materials.

The axial stress � in the test specimen is calculated by dividing the load P by the cross-sec-
tional areaA (see Equation (1--1)). When the initial areaof thebar isused in this calculation, the
resulting stress is called thenominal stress (other names are conventional stress and engineer-
ing stress). Amore exact value of the axial stress, knownas the true stress, canbe calculated by
using the actual area of the bar, which can become significantly less than the initial area for
some materials.

The average axial strain in the bar is found from the measured elongation � between the
gagemarks bydividing � by the gage lengthL, Equation (1--2). If the initial gage length is used
(for instance, 2.0 in.), then the nominal strain is obtained. Of course, the distance between the
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gagemarks increases as the tensile load is applied. If the actual distance is used in calculating
the strain, we obtain the true strain, or natural strain.

Compression tests of metals are customarily made on small specimens in the shape of
cubesor circular cylinders. Cubes areoften 2.0 in. ona side, and cylindersusually havediame-
ters of about 1 in.with lengths of 1 to 12 in. Both the loadapplied by themachineand the short-
ening of the specimen may be measured. The shortening should be measured over a gage
length that is less than the total length of the specimen in order to eliminate end effects.

Concrete is tested in compression on every important construction project to ensure that
the required strengths have been obtained. The standardASTMconcrete test specimen is 6 in.
in diameter, 12 in. long, and 28 days old (the age of concrete is important because concrete
gains strength as it cures).

After performing a tension or compression test and determining the stress and strain at
various magnitudes of the load, we can plot a diagram of stress versus strain. Such a stress-
strain diagram is characteristic of the material and conveys important information about the
mechanical properties and type of behavior. Stress-strain diagrams were originated by Jacob
Bernoulli (1654-1705) and J. V. Poncelet (1788-1867).

The firstmaterialwewill discuss is structural steel, also knownasmild steel or low-carbon
steel. Structural steel is one of the most widely used metals, being the principal steel used in
buildings, bridges, towers, andmany other types of construction. A stress-strain diagram for
a typical structural steel in tension is shown in Figure 2 (not to scale).

Strains are plotted on the horizontal axis and stresses on the vertical axis. The diagrambe-
gins with a straight line from O to A. In this region, the stress and strain are directly propor-
tional, and the behavior of thematerial is said to be linear elastic. Beyond point A, the linear
relationship between stress and strain no longer exists; hence, the stress at A is called the pro-
portional limit. For low-carbon steels, this limit is in the range 30 to 40 ksi, but high-strength
steels (with higher carbon content plus other alloys) can have proportional limits of 80 ksi and
more.

With an increase in the load beyond the proportional limit, the strain begins to increase
more rapidly for each increment in stress. The stress-strain curve thenhas a smaller and small-
er slope, until, at point B, the curve becomes horizontal. Beginning at this point, considerable
elongationoccurs,withnonoticeable increase in the tensile force (fromB toCon thediagram).
This phenomenon is known as yielding of the material, and the stress at point B is called the
yield stress, or yield point. In the region from B to C, the material becomes perfectly plastic,
which means that it can deform without an increase in the applied load. The elongation of a
mild-steel specimen in theperfectly plastic region is typically 10 to15 times the elongation that
occurs between the onset of loading and the proportional limit.

After undergoing the large strains that occur during yielding in the region BC, the steel
begins to strain harden. During strain hardening, thematerial undergoes changes in its atom-



Structures/Materials Section

Page 8CIVL 1101 -- Civil Engineering Measurements

Figure 2. Stress--strain diagram for structural steel.
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ic and crystalline structure, resulting in increased resistance of the material to further de-
formation. Thus, additional elongation requires an increase in the tensile load, and the stress-
strain diagramhas a positive slope fromC toDThe load eventually reaches its maximumval-
ue, and the corresponding stress tat pointD) is called the ultimate stress. Further stretching of
the bar is actually accompanied by a reduction in the load, and fracture finally occursat apoint
such as E on the diagram.

Lateral contraction of the specimen occurs when it is stretched, resulting in a decrease in
the cross-sectional area, as previously mentioned. The reduction in area is too small to have a
noticeable effect on the calculated value of stress up to aboutpointC, but beyond that point the
reduction begins to alter the shape of the diagram. Of course, the true stress is larger than the
nominal stress because it is calculated with a smaller area.

In the vicinity of the ultimate stress, the reduction in area of the bar becomes clearly visible
and a pronounced necking of the bar occurs. If the actual cross-sectional area at the narrow
part of the neck is used to calculate the stress, the true stress-strain curve will follow the
dashed line CE’ in Figure 2. The total load the bar can carry does indeed diminish after the
ultimate stress is reached (curveDE), but this reduction is due to the decrease in area of the bar
and not to a loss in strength of the material itself.

In reality, the material withstands an increase in stress up to failure (point E’). For most
practical purposes, however, the conventional stress-strain curve OABCDE, which is based
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upon the original cross-sectional area of the specimen and hence is easy to calculate, provides
satisfactory information for use in design.

Thediagram inFigure 2 shows the general characteristics of the stress-strain curve formild
steel, but its proportions are not realistic because, as alreadymentioned, the strain that occurs
fromB to Cmay be 15 times the strain occurring fromO toA. Furthermore, the strains fromC
to E are many times greater than those from B to C. Figure shows a stress-strain diagram for
mild steel drawn approximately to scale. In this figure, the strains fromO toA are so small in
comparison to the strains fromA to E that they cannot be seen, and the linear part of the dia-
gram appears to be a vertical line.

The presence of a pronounced yield point followed by large plastic strains is an important
characteristic ofmild steel that is sometimesutilized in practical design. Materials that under-
go large strains before failure are classified as ductile. An advantage of ductility is that visible
distortionsmay occur if the loads become too large, thus providing an opportunity to take re-
medial actionbefore an actual fracture occurs. Also, ductilematerials are capable of absorbing
large amounts of energyprior to fracture. Ductilematerials includemild steel, aluminumand
someof its alloys, copper,magnesium, lead,molybdenum, nickel, brass, bronze, monelmetal,
nylon, teflon, and many others.

Structural steel contains about 0.2% carbon as an alloy and is classified as a low-carbon
steel. With increasing carbon content, steel becomes less ductile but has a higher yield stress

Figure 3. Stress--strain diagram for structural steel in tension.
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and higher ultimate stress. The physical properties of steel are also affected by heat treating,
the presence of other alloys, and manufacturing processes such as rolling.

Many aluminum alloyspossess considerable ductility, although theydo not have a clearly
definable yield point. Instead, they exhibit a gradual transition from the linear to the nonlin-
ear region, as shown by the stress-strain diagram in Figure 4. Aluminum alloys suitable for
structural purposes are availablewithproportional limits in the range 10 to 60ksi andultimate
stresses in the range 20 to 80 ksi.

When a material such as aluminum does not have an obvious yield point and yet under-
goes large strains after the proportional limit is exceeded, an arbitrary yield stressmay be de-
termined by the offsetmethod. A line is drawn on the stress-strain diagramparallel to the ini-
tial linear part of the curve but is offset by some standard amount of strain, such as 0.002 tor
0.2%). The intersection of the offset line and the stress-strain curve (point A in the figure) de-
fines the yield stress.

Since this stress is determined by anarbitrary rule and is not an inherent physical property
of thematerial, it should be referred to as the offset yield stress. For a material such as alumi-
num, the offset yield stress is slightly above the proportional limit. In the case of structural
steel, with its abrupt transition from the linear region to the region of plastic stretching, the
offset stress is essentially the same as both the yield stress and the proportional limit.

Rubbermaintains a linear relationship between stress and strain up to very large strains in
the vicinity of 0.1 or 0.2. The behavior after the proportional limit is exceeded depends upon
the type of rubber (see Figure 5). Some kinds of soft rubber continue to stretch enormously
without failure. Thematerial eventuallyoffers increasing resistance to the load, and the stress-
strain curve turns markedly upward prior to failure. You can easily sense this characteristic
behavior by stretching a rubber band.

Figure 4. Stress--strain diagram for aluminum in tension.
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Figure 5. Stress--strain diagram for aluminum in tension.
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The ductility of a material in tension can be characterized by its elongation and by the re-
duction in area at the cross sectionwhere fracture occurs. The percent elongation is defined as
follows:

Percent elongation=
Lf− Lo
Lo

(100%) (1--3)

inwhichL0 is the original gage lengthand Lf is thedistance between the gagemarks at fracture.
Because the elongation is not uniform over the length of the specimen but is concentrated in
the region of necking, the percent elongation depends upon the gage length. Therefore, when
stating the percent elongation, the gage length should also be given. For a 2 in. gage length,
steel may have an elongation in the range of 10% to 40%, depending upon composition; for
structural steel, values of 25%or 30%are common. In the case of aluminumalloys, the elonga-
tion varies from 1% to 45%, depending upon composition and treatment.

Thepercent reduction in areameasures the amount of necking that occurs and is defined as
follows:

Percent reduction in area=
Ao− Af

Ao
(100%) (1--4)

in which Ao , is the original cross-sectional area and Af , is the final area at the fracture section.
For ductile steels, the reduction is about 50%.

Materials that fail in tensionat relatively lowvaluesof strainare classifiedasbrittlemateri-
als. Examples are concrete, stone, cast iron, glass, ceramicmaterials, andmany commonmetal-
lic alloys. These materials fail with only little elongation after the proportional limit (point A
in Figure 6) is exceeded, and the fracture stress (point B) is the same as the ultimate stress.
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High-carbon steels behave in a brittlemanner; theymayhave averyhighyield stress (over 100
ksi in some cases), but fracture occurs at an elongation of only a few percent.

Figure 6. Stress--strain diagram for a brittle material.
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Ordinary glass is a nearly ideal brittle material, because it exhibits almost no ductility
whatsoever. The stress-strain curve for glass in tension is essentially a straight line, with fail-
ureoccurringbeforeanyyielding takesplace. Theultimate stress is about 10,000psi for certain
kinds of plate glass, but great variation exists, depending upon the type of glass, size of speci-
men, and the presence of microscopic defects. Glass fibers can develop enormous strengths,
and ultimate stresses over 1,000 ksi have been attained.

Stress-strain diagrams for compression have different shapes from those for tension. Duc-
tile metals such as steel, aluminum, and copper have proportional limits in compression very
close to those in tension, hence the initial regions of their compression stress-strain diagrams
arevery similar to the tensiondiagrams. However,whenyieldingbegins, thebehavior isquite
different. In a tension test, the specimen is being stretched, neckingmayoccur, andultimately
fracture takes place. When a small specimen of ductile material is compressed, it begins to
bulge outward on the sides and become barrel shaped. With increasing load, the specimen is
flattened out, thus offering increased resistance to further shortening (whichmeans the stress-
strain curve goes upward). These characteristics are illustrated in Figure 7, which shows a
compression stress-strain diagram for copper.

Brittlematerials in compression typically have an initial linear region followedby a region
in which the shortening increases at a higher rate than does the load. Thus, the compression
stress-strain diagramhas a shape that is similar to the shape of the tensile diagram. However,
brittle materials usually reach much higher ultimate stresses in compression than in tension.
Also, unlike ductile materials in compression (see Figure 6), brittlematerials actually fracture
or break at themaximum load. The tension and compression stress-strain diagrams for a par-
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Figure 7. Compression stress-strain diagram for copper.
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ticular type of cast iron are given in Figure 8. Curves for other brittle materials, such as con-
crete and stone, have similar shapes but quite different numerical values.

A table of important mechanical properties for various materials can be found in most
Strength of Materials textbooks. However, properties and stress-strain curves vary greatly,
even for the same material, because of different manufacturing processes, chemical composi-
tion, internal defects, temperature, and many other factors. Hence, any data obtained from
general tables should be considered as typical, but not necessarily suitable for a specific ap-
plication.

Figure 8. Stress--strain diagram for cast iron.
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1.4 Elasticity and Plasticity

The stress-straindiagramsdescribed in thepreceding section illustrate thebehavior of var-
ious materials as they are loaded statically in tension or compression. Now let us consider
what happens when the load is slowly removed, and the material is unloaded. Assume, for
instance, thatwe apply a load to a tensile specimen so that the stress and strain go fromO toA
on the stress-strain curve in Figure 9. Suppose further that, when the load is removed, thema-
terial followsexactly the same curveback to the originO. This propertyof amaterial, bywhich
it returns to its original dimensions during unloading, is called elasticity, and the material it-
self is said tobe elastic. Note that the stress-strain curve fromOtoAneednot be linear inorder
for the material to be elastic

Now let us suppose thatwe load this samematerial toamuchhigher level, so thatpoint B is
reached on the stress-strain diagram, see Figure 9. In this case, when unloading occurs, the
material follows line BCon the diagram. This unloading line typically is parallel to the initial
portion of the loading curve; that is line BC is parallel to a tangent to the stress-strain curve at
O. When point C is reached, the load has been entirely removed, but a residual strain, or per-
manent strain, OC remains in thematerial. The corresponding residual elongation of the bar
is called the permanent set. Of the total strain OD developed during loading fromO to B, the
strain CD has been recovered elastically and the strain OC remains as a permanent strain.
Thus, during unloading the bar returns partially to its original shape; hence, the material is
said to be partially elastic.
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Figure 9. Elastic behavior; partially elastic behavior.
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Whenabar is being tested, the load canbe increased fromzero to somesmall selectedvalue
and then removed. If there is no permanent set (that is, if the elongation of the bar returns to
zero) then the material is elastic up to the stress represented by the selected value of the load.
This process of loading and unloading can be repeated for successively higher values of load.
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Eventually, a stress will be reached such that not all the strain is recovered during unloading.
By this procedure, it is possible to determine the stress at the upper limit of the elastic region;
for instance, it could be the stress at point E in Figure 9. This stress is known as the elastic limit
of the material.

Manymaterials, includingmostmetals, have linear regions at the beginning of their stress-
strain curves (see Figures 2 and 4). As explained in a previous section, the upper limit of this
linear region is defined by the proportional limit. Usually the elastic limit is slightly above, or
nearly the same as, the proportional limit. Hence, for many materials the two limits are as-
signed the same numerical value. In the case of mild steel, the yield stress is also very close to
the proportional limit, so that for practical purposes the yield stress, the elastic limit, and the
proportional limit are assumed tobe equal. Of course, this situationdoesnot hold for allmate-
rials. Rubber provides the outstanding example of amaterial that is elastic far beyond thepro-
portional limit.

ε

�
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E

Unloading
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B

C

Figure 10. Reloading of a material and raising the yield stress.

F

Reloading

The characteristic of a material by which it undergoes inelastic strains beyond those at the
elastic limit is known as plasticity. Thus, on the stress-strain curve in Figure 9, we have an
elastic region followedby aplastic region. When large deformations occur in a ductilemateri-
al loaded into the plastic region, the material is said to undergo plastic flow.

If the material remains within the elastic range, it can be loaded, unloaded, and loaded
again without significantly changing the behavior. However, when loaded into the plastic
range, the internal structure of the material is altered and its properties change. For instance,
we have already observed that a permanent strain exists in the specimenafter unloading from
the plastic region (Figure 9).

Now suppose that the material is reloaded after such an unloading (Figure 10). The new
loading begins at point C on the diagram and continues upward to B, the point at which un-
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loading began during the first loading cycle. The material then follows the original stress-
strain diagram toward point F. During the second loading, the material behaves in a linear
manner from C to B, hence the material has a higher proportional limit and a higher yield
stress thanbefore. Thus, by stretching amaterial, it ispossible to raise theyield point, although
the ductility is reduced because the amount of yielding from B to F is less than from E to F.

The stress-strain diagrams previously described are obtained from tension tests involving
only static loading of the specimens; hence, the passage of time did not enter into our discus-
sions. However, somematerials develop additional strains over long periods of time and are
said to creep. This phenomenon can manifest itself in a variety of ways. For instance, let us
suppose that a vertical bar (Figure 11) is loaded by a constant forceP. When the load is applied
initially, the bar elongates by an amount �0. Let us assume that this loading and the corre-
sponding elongation takeplaceduring a time interval of duration t0. Subsequent to time t0, the
load remains constant. However, due to creep, the bar may gradually lengthen, as shown in
Figure 11, even though the load does not change. This behavior occurs with many materials,
although sometimes the change is too small to be of concern.

O

Figure 11. Creep in a bar under constant load.
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As a second example of creep, consider a wire that is stretched between two immovable
supports so that it has an initial tension stress �0, (Figure ). Again, we will denote the time
duringwhich thewire is loaded initially as t0 (Figure 12). With the elapse of time, the stress in
the wire gradually diminishes, eventually reaching a constant value, even though the sup-
ports at the ends of the wire do not move. This process, which is a manifestation of creep, is
called relaxation of the material.

Creep is usually more important at high temperatures than at ordinary temperatures;
hence, itmust be considered in the design of engines, furnaces, and other structures that oper-
ate at elevated temperatures for long periods of time. However, materials such as steel, con-
crete, and wood creep slightly even at atmospheric temperatures. Therefore, it is sometimes
necessary to compensate for creep effects in ordinary structures.
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O

Figure 12. Relaxation of stress in a wire under constant strain.
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For example, creep of concrete can create “waves” in bridge decks because of sagging be-
tween the supports. One remedy is to construct the deckwith an upward camber, which is an
initial deflection above the horizontal, so that, when creep occurs, the spans lower to the level
position.

1.5 Linear Elasticity and Hooke’s Law

Most structural materials have an initial region on the stress-strain diagram in which the
material behaves both elastically and linearly. An example is the region from the origin O up
to the proportional limit at pointA on the stress-strain curve for structural steel (see Figure 2).
Other examples are the regions below both the proportional limits and the elastic limits on the
diagramsof Figures 4 through8. Whenamaterial behaves elastically and alsoexhibits a linear
relationship between stress and strain, it is said to be linearly elastic. This type of behavior is
extremely important in engineering because many structures and machines are designed to
function at low levels of stress in order to avoid permanent deformations from yielding or
plastic flow. Linear elasticity is a property of many solid materials, including metals, wood,
concrete, plastics, and ceramics.

The linear relationship between stress and strain for a bar in simple tensionor compression
can be expressed by the equation

σ= EÁ (1--5)

inwhichE is a constant of proportionality known as themodulus of elasticity for thematerial.
Themodulus of elasticity is the slope of the stress-strain diagram in the linearly elastic region,
and its value depends upon the particular material being used. The units of E are the same as
the units of stress, inasmuch as strain is dimensionless. Hence, the units of E are psi or ksi in
USCS units and pascals in SI units.
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The equation σ = Eε commonly known as Hooke’s law, for the famous English scientist
Robert Hooke (1635-1703). Hooke was the first person to investigate the elastic properties of
materials, and he tested such diverse materials as metal, wood, stone, bones, and sinews. He
measured the stretching of long wires supporting weights and observed that the elongations
“alwaysbear the sameproportionsone to the other that theweights do thatmake them.” Thus,
Hooke established the linear relationship between the applied load and the resulting elonga-
tion.

Equation (1-5) applies only to ordinary tension and compression; for more complicated
states of stress, a generalizedHooke’s law is required. In calculations, tensile stress and strain
are usually considered as positive, and compressive stress and strain as negative.

Themodulus of elasticity E has relatively large values formaterials that are very stiff, such
as structural metals. Steel has a modulus of approximately 30,000 ksi or 200 GPa; for alumi-
num,E equalsapproximately 10,600ksi or 70GPa. More flexiblematerials havea lowermodu-
lus; a typical value for wood is 1,600 ksi or 11 GPa. Representative values of E are typically
listed in most Strength of Materials textbooks. For mostmaterials, the value of E in compres-
sion is the same as in tension.

The modulus of elasticity is often called Youug’s modulus, after another English scientist,
ThomasYoung (1773-1829). In connectionwithan investigationof tensionand compressionof
prismatic bars, Young introduced the idea of a “modulus of the elasticity.” However, his mo-
duluswasnot the sameas the one inuse today, because it involvedproperties of the bar aswell
as of the material.


