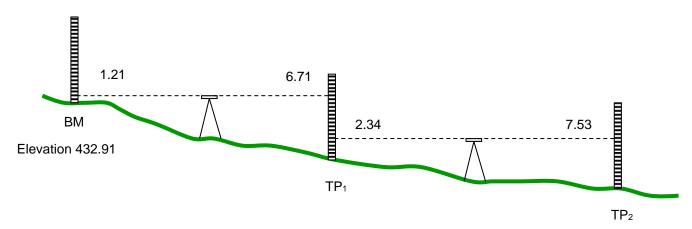

CIVL 1101

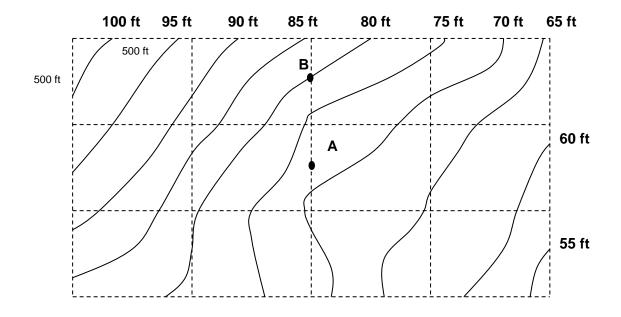
Fall 2024

REVIEW FOR FINAL EXAM


Multiple Choice Questions - 2 points each

- 1. A random error of ±0.11 ft is estimated for each of 12 length measurements that are added together to get the total length. What is the estimated total error for the total length?
 - A. ±0.38 ft
 - B. ±0.33 ft
 - C. ±0.28 ft
 - D. ±0.19 ft
 - E. ±0.01 ft
- 2. What is the distance to the flag pole if the pole is 35.0 ft in height and the measured angle $\alpha = 7^{\circ}$ 45' 30".

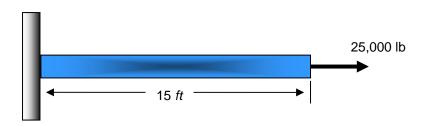
Point	BS	HI	FS	Elevation
BM ₁	1.23			100.00
TP ₁	2.25		4.52	
TP ₂	6.25		4.65	
TP ₃	4.23		3.21	
TP ₄	1.47		5.69	
BM ₂			8.42	
		Change in elevation		


- 3. Complete and check the above set of level notes and estimate the height of the instrument between points TP₂ and TP₃.
 - A. 102.42 ft
 - B. 101.58 ft
 - C. 100.56 ft
 - D. 97.36 ft
 - E. 95.48 ft
- Complete and check the above set of level notes and estimate the elevation of point BM₂.
 - A. 101.02 ft
 - B. 100.02 ft
 - C. 98.02 ft
 - D. 97.35 ft
 - E. 88.94 ft

Point	BS	HI	FS	Elevation
BM ₁				
TP ₁				
TP ₂				
		Change in elevation		

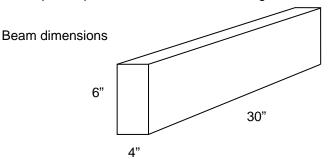
- 5. Develop and check a set of level notes from the above figure. What is the FS at point TP₂?
 - A. 1.34 ft
 - B. 3.20 ft
 - C. 4.41 ft
 - D. 6.71 ft
 - E. 7.53 ft
- 6. What is the change in elevation between points BM₁ and TP₂?
 - A. -16.40 ft
 - B. -10.69 ft
 - C. 4.54 ft
 - D. 10.94 ft
 - E. 432.91 ft

From the topographic data given in the figure below, answer the following four questions.



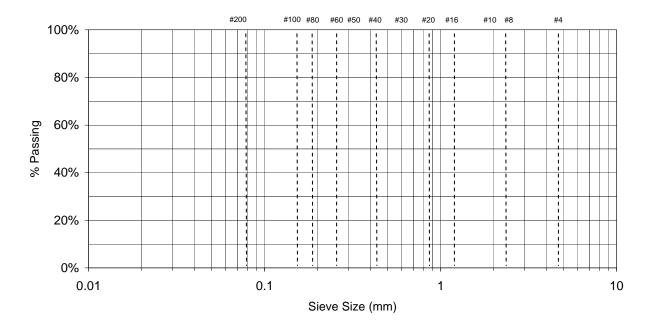
- 7. Estimate the elevation of Point A?
 - A. 65 ft
 - B. 68 ft
 - C. 70 ft
 - D. 73 ft
 - E. 75 ft
- 8. Which of the following values is most nearly slope between Point A and Point B?
 - A. 1%
 - B. 3%
 - C. 5%
 - D. 7%
 - E. 9%
- 9. For the following site data, what would be an appropriate square grid spacing to develop a contour map using one-foot intervals?
 - A. 5 foot
 - B. 10 foot
 - C. 15 footD. 20 foot
 - E. 25 foot

Side	Distance
AB	100.0
BC	150.0
CD	200.0
DA	100.0


Point	Elevation		
Α	100.0		
В	105.0		
С	108.0		
D	105.0		

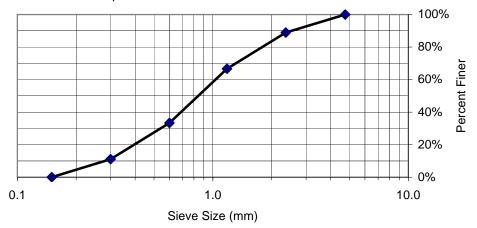
Consider the linear-elastic prismatic bar fixed on the left-hand-side and loaded by an axial force at the right-hand-side, as shown in figure below.

- 10. If the bar fails at strains greater than 0.05, what is the largest allowable deformation of bar to prevent failure?
 - A. 11 inches
 - B. 9 inches
 - C. 7 inches
 - D. 5 inches
 - E. 2 inches
- 11. If the bar yields at a deformation of 0.25 inches under an axial load, estimate the yield stress in the material if the modulus of elasticity of 29,000 ksi?
 - A. 20 ksi
 - B. 40 ksi
 - C. 60 ksi
 - D. 80 ksi
 - E. 100 ksi
- 12. What is the deformation of the bar shown above if its cross-sectional area is 0.5 in² and the modulus of elasticity of the material is 29,000 ksi?
 - A. 0.03 inches
 - B. 0.31 inches
 - C. 0.62 inches
 - D. 1.25 inches
 - E. 2.50 inches


Construct *ten* beams, each having the dimensions shown in the figure below. Include a "make-sure-you-have-enough" factor of 1.2 in your mix calculations. Assume a w/c ratio of 0.35 and a mix design of 1:2:3. All weights should be reported to the nearest quarter-pound. Assume concrete weights 145 lb/ft³.

- 13. The total volume of concrete required for this application is estimated to be:
 - A. 1,080 in³
 - B. 2,700 in³
 - C. 7,200 in³
 - D. 8,640 in³
 - E. 9,640 in³
- 14. The weight of cement required to make 600 lbs of the concrete mix describe above is:
 - A. 40 lbs
 - B. 60 lbs
 - C. 80 lbs
 - D. 100 lbs
 - E. 120 lbs
- 15. The weight of course aggregate required to make 300 lbs of the concrete mix describe above is:
 - A. 75 lbs
 - B. 100 lbs
 - C. 125 lbs
 - D. 150 lbs
 - E. 175 lbs

From the data given below, develop a particle-size distribution plot. Use the table and blank graph shown below:


Sieve Number	Diameter	Mass of Soil Retained	Percent	Cumulative	Percent
	(mm)	on Each Sieve (g)	Retained (%)	% Retained	Finer (%)
4	4.750	0.0			
8	2.360	40.0			
16	1.180	100.0			
30	0.600	100.0			
50	0.300	100.0			
100	0.150	60.0			
PAN		0.0		_	

Use the above sieve analysis to answer the following three questions.

- 16. The percent passing the #30 sieve may be most closely approximated as:
 - A. 100%
 - B. 80%
 - C. 40%
 - D. 20%
 - E. 10%
- 17. The effective size of the soil may be most closely approximated as:
 - A. 0.01 mm
 - B. 0.10 mm
 - C. 0.20 mm
 - D. 0.25 mm
 - E. 0.40 mm

Consider the particle-size distribution plot shown below.

- 18. The effective size of the soil shown in the graph above is most closely approximated by:
 - A. 0.3 mm
 - B. 0.4 mm
 - C. 0.5 mm
 - D. 0.6 mm
 - E. 0.7 mm
- 19. The particle-size D_{30} is most closely approximated as:
 - A. 0.55 mm
 - B. 0.65 mm
 - C. 0.75 mm
 - D. 0.85 mm
 - E. 1.05 mm
- 20. Which of the following filtration mechanisms is *not* involved in removing suspended solids in a granular-media filter?
 - A. interception
 - B. straining
 - C. flocculation
 - D. hydration
 - E. sedimentation
- 21. The hydraulic loading rate in the 3.5 inch diameter filters in lab, with a flowrate of 1,250 ml/min, is most nearly approximated as:
 - A. 1.0 gpm/ft²
 - B. 2.0 gpm/ft²
 - C. 3.0 gpm/ft²
 - D. 4.0 gpm/ft²
 - E. 5.0 gpm/ft²
- 22. The backwash velocity required to expand a sand bed filter to a porosity of 0.70 for a sand with a settling velocity is 0.20 ft/s and the initial porosity of the sand is 0.35 is most nearly approximated as:
 - A. 0.01 ft/s
 - B. 0.03 ft/s
 - C. 0.04 ft/s
 - D. 0.05 ft/s
 - E. 0.07 ft/s

time	Flowrate	Turbidity	V	Average Turbidity
(min)	(ml/min)	(NTU)	(ml)	(NTU)
	· · · · ·		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(1110)
0	1000	2		
10	1000	2		
20	900	3		
30	900	5		
40	800	6		
50	800	8		
60		10		

Initial NTU 100

Sum

- 23. The results of a filter run, operated in a manner identical to that used in lab, are shown in the table above. Which of the following volumes most closely estimates the total volume treated after 60 minutes?
 - A. 24,000 ml
 - B. 36,000 ml
 - C. 48,000 ml
 - D. 54,000 ml
 - E. 72,000 ml
- 24. Which of the following values most closely estimates the average turbidity after 60 minutes?
 - A. 0 NTU
 - B. 3 NTU
 - C. 5 NTU
 - D. 7 NTU
 - E. 9 NTU
- 25. If the average turbidity is 10 NTU at the end of 60 minutes, which of the following values most closely estimates the %NTU removed?
 - A. 100%
 - B. 95%
 - C. 90%
 - D. 85%
 - E. 80%

Equation Sheet

$$v = v_s \alpha_e^{4.5}$$
 $L_e = \frac{L(1-\alpha)}{1-(v/v_s)^{0.22}}$

 $7.48 \text{ gallons} = 1 \text{ ft}^3$ 3.785 liters = 1 gallon